References

AdFM+21

Christiane Adcock, Marc Henry de Frahan, Jeremy Melvin, Ganesh Vijayakumar, Gianluca Iaccarino, Robert Moser, and Michael Sprague. Sst k-omega simulations of the atmospheric boundary layer including the coriolis effect. APS DFD, 2021.

Aft94

M. Aftosmis. Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA Journal, 32(2):268–277, 1994.

Bau11

Mary C. Bautista. Turbulence modelling of the atmospheric boundary layer over complex topography. PhD thesis, École de Technologie Supérieure Université du Québec, Montreal, CA, October 2011.

BDM15

Mary C. Bautista, Louis Dufresne, and Christian Masson. Hybrid turbulence models for atmospheric flow; a proper comparison with rans models. E3S Web of Conferences, 2015. URL: https://www.e3s-conferences.org/articles/e3sconf/abs/2015/01/e3sconf_sowe2014_03001/e3sconf_sowe2014_03001.html.

Chi82

Kuei-Yuan Chien. Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA journal, 20(1):33–38, 1982.

CLM+12

M. J. Churchfield, S. Lee, P. K. Moriarty, L. A. Martinez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur. A large-eddy simulatiion of wind-plant aerodynamics. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 9–12 Jan. 2012.

Dav97

L. Davidson. Large-eddy simulations: a note on the derivation of the equations for the subgrid turbulent kintic energies. Technical Report, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, 1997.

Dom06

S. Domino. Towards verification of formal time accuracy for a family of approximate projection methods using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2006.

Dom08

S. Domino. A comparison of various equal-order interpolation methodologies using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2008.

Dom10

S. Domino. Towards verification of sliding mesh algorithms for complex applications using mms. In Center for Turbulence Research Summer Proceedings. 2010.

Dom14

S. Domino. A comparison between low order and higher order low mach discretization approaches. In Center for Turbulence Research Summer Proceedings. 2014.

DNP98

F. Ducors, F. Nicoud, and T. Poinsot. Wall-adapting local eddy-viscosity models for simulations in complex geometries. In International Conference on Computational Conference, volume 50. 1998.

Dye74

A. J. Dyer. A review of flux-profile relationships. Boundary-Layer Meteorology, 7:363–372, 1974.

EWS+10

H. Edwards, A. Williams, G. Sjaardema, D. Baur, and W. Cochran. Sierra toolkit computational mesh computational model. Technical Report SAND-20101192, Sandia National Laboratories, Albuquerque, NM, 2010.

G03

Tucker P. G. Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1):229–248, September 2003. URL: https://doi.org/10.1016/S0021-9991(03)00272-9.

HOM20

S. Haering, T. Oliver, and R. Moser. Active model split hybrid RANS/LES. Journal of Fluid Mechanics, 2020. Submitted. URL: http://arxiv.org/abs/2006.13118.

HOM19

Sigfried Haering, Todd Oliver, and Robert D. Moser. Towards a Predictive Hybrid RANS/LES Framework, chapter, pages. AIAA, 2019. URL: https://arc.aiaa.org/doi/abs/10.2514/6.2019-0087, arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2019-0087, doi:10.2514/6.2019-0087.

HBH+03

M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, J. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams. An overview of trilinos. Technical Report SAND-20032927, Sandia National Laboratories, Albuquerque, NM, 2003.

Jas96

H. Jasek. Error analysis and estimation for the finite volume menthod with applications to fluid flow. In Ph.D. Thesis, Imperial College. 1996.

KV93

Y. Kallinderis and P. Vijayan. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes. AIAA Journal, 31(8):1440–1447, 1993.

KB89

Y. G. Kallinderis and J. R. Baron. Adaptive methods for a new navier-stokes algorithm. AIAA Journal, 27(1):37–43, 1989.

KP02

Joseph Katz and Allen Plotkin. Low Speed Aerodynamics. Cambridge University Press, second edition, 2002.

Kob13

Tilman Koblitz. CFD modeling of non-neutral atmospheric boundary layer conditions. PhD thesis, Technical University of Denmark, Roskilde, Denmark, July 2013.

Mar05

M. Martinez. Comparison of galerkin and control volume finite element for advection-diffusion problems. Int. J. Num. Meth. Fluids, 50(3):347–376, 2005.

MartinezT17

Luis A Martínez-Tossas. Large Eddy Simulations and Theoretical Analysis of Wind Turbine Aerodynamics Using an Actuator Line Model. PhD thesis, Johns Hopkins University, Baltimore, MD USA, July 2017.

Mav00

D. J. Mavriplis. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. International Journal for Numerical Methods in Fluids, 34(2):93–111, 2000.

MKL03

F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the sst turbulence model. Turb, Heat and Mass Trans, 2003.

Moe84

C.-H. Moeng. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41(13):2052–2062, 1984.

Pao82

S. Paolucci. On the filtering of sound waves from the navier-stokes equations. Technical Report SAND-828257, Sandia National Laboratories, Livermore, CA, December 1982.

RB78

R. G. Rehm and H. R. Baum. The equations of motion for thermally driven buoyant flows. Journal of Research of the National Bureau of Standards, 83:279, 1978.

RM84

R. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16:99–137, 1984.

SR87

G. Schneider and M. Raw. Control volume finite element method for heat transfer and fluid flow using colocated variables - 1. computational procedure. Numerial Heat Transfer, 11(4):363–390, 1987.

SHZ91

F. Shakib, T. J. R. Hughes, and J. Zdenek. A new finite element formulation for computational fluids dynamics: the compressible euler and navier stokes equations. Comp. Meth. in App. Mech and Engr., 89:141–219, 1991.

SR07

P. R. Spalart and C. L. Rumsey. Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA Journal, 45:2544–2553, 2007.

SorensenS02

Jens Nørkær Sørensen and Wen Zhong Shen. Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, 124(2):393–399, 05 2002. URL: http://dx.doi.org/10.1115/1.1471361.

Tea16

SIERRA Thermal/Fluid Development Team. Sierra low mach module: fuego theory manual - version 4.42. Technical Report SAND2016-10163, Sandia National Laboratories, October 2016.

TDB05

S. Tieszen, S. Domino, and A. Black. Validation of a simple turbulence model suitable for closure of temporally-filtered navier-stokes equations using a helium plume. Technical Report SAND-20053210, Sandia National Laboratories, Albuquerque, NM, June 2005.

W+98

David C Wilcox and others. Turbulence modeling for CFD. Volume 2. DCW industries La Canada, CA, 1998.